Home Models Compare Scorecards Evals Methodology FAQ
← Back to all evals
AI Benchmark Results 2026: Model Performance Rankings

AI Benchmark Results 2026: Model Performance Rankings


Our Benchmark Methodology

We test on real engineering tasks:

  • Bug fixes
  • Feature implementation
  • Code review
  • Architecture decisions
  • API integrations

Each task scored 0-10 on correctness, efficiency, and clarity.

Overall Results

ModelScoreChange
Claude 49.4
GPT-59.2
Gemini 2.5 Pro8.9
DeepSeek R18.5
Claude 3.58.4
Gemini 2.5 Flash8.3
GPT-4o8.2

By Category

Coding

  1. Claude 4 (9.5)
  2. GPT-5 (9.2)
  3. Gemini 2.5 Pro (8.9)

Reasoning

  1. Claude 4 (9.3)
  2. GPT-5 (9.3)
  3. DeepSeek R1 (9.0)

Tool Use

  1. GPT-5 (9.4)
  2. Claude 4 (8.9)
  3. Gemini 2.5 Pro (8.7)

Cost Efficiency

  1. Gemini 2.5 Flash ($0.08/1K tokens)
  2. DeepSeek R1 ($0.14/1K tokens)
  3. GPT-4o Mini ($0.15/1K tokens)

Key Insights

  1. Claude wins on code quality — Produces more maintainable solutions
  2. GPT leads on agents — Better tool use and autonomy
  3. Gemini wins on value — Best price/performance
  4. DeepSeek is viable — Open source is competitive

Updated Weekly

We refresh these results weekly as models update.